基于历史分类器二次学习的数据流分类方法

作者:刘若辰; 张泽桐; 焦李成; 刘静; 慕彩虹; 张向荣
来源:2018-12-26, 中国, CN201811599198.4.

摘要

本发明提出了一种基于历史分类器二次学习的数据流分类方法,旨在通过历史分类器的二次学习有效利用历史信息,提高动态数据环境下数据流分类的精度,包括如下步骤:获取训练数据和待分类数据;获取分类器;判断存档内存入的分类器数量是否满足要求;对存档中的分类器进行更新;对训练数据进行分类;对历史分类器进行二次学习,并构建分类器集成;对待分类数据进行分类;获取t=m+1以后的待分类数据的分类结果;向用户输出待分类数据的分类结果。本发明在构建集成分类器时,通过对存档中历史存入的分类器进行二次学习,对历史信息进行纠正,从而有效的利用历史信息,提高动态数据环境下数据流分类的精度。