摘要

不同土壤质地直接影响土壤水分渗透程度和农作物养分吸收,进而影响农作物的产量及质量,针对土壤质地难以开展高效、精准识别等问题,本文基于卷积神经网络-随机森林(CNN-RF)模型算法用于实现土壤质地高效、精准识别。首先用比重法测定土壤样本中砂粒、粉粒和粘粒的百分比,然后采用自主研制的便携图像采集装置,对广州地区的土壤进行1000个样本采集并对土壤研磨、筛选、拍摄,建立土壤样本质地和图像的数据库,提取图像中的颜色特征和纹理特征,利用CNN-RF模型并结合3种组合(颜色、纹理、颜色+纹理)方法对土壤样本中的粘粒、粉粒和砂粒百分含量进行回归预测。采用平均绝对误差(MAE)、均方根误差(RMSE)和判定系数(R~(2))进行模型回归性能评估。从混淆矩阵进行模型分类结果可知,预测砂粒的MAE、RMSE、R~(2 )值分别为3.37、3.71和0.99;粉粒的MAE、RMSE、R~(2)值分别为3.48、3.79和0.98;粘粒的MAE、RMSE和R~(2)值分别为3.38,3.76,0.99。与RF、KNN、VGG6-RF模型相比,这种CNN-RF模型得到的MAE值和RMSE值较小,R~(2)接近于1,其准确度为99.43%,因而性能更优。该方法具有简单、易用、快速、可靠和准确等优点,对岭南丘陵耕地土壤的优化管理和可持续利用具有重要意义。