摘要

考虑影响煤炭含水率变化的温度、湿度和风力等主要天气因素,以神华黄骅港为例,研究港口煤垛堆场的煤炭含水率预测方法。该方法首先基于长短期记忆(Long Short-Term Memory, LSTM)神经网络建立煤炭含水率预测模型,然后通过对采集到的港口实时天气数据和煤堆不同煤种的含水率数据融合处理,使用LSTM网络对训练数据集进行训练,并用来测试数据集,最后确定煤炭含水率预测模型,从而实现对堆场的智能洒水。研究结果表明,该模型对煤港堆场含水率预测的准确率在85%以上,据此模型建立智能洒水策略,能有效抑制煤堆起尘。上述方法对节约港口用水和减少污水量,以及对煤炭绿色开采和绿色生态港口建设具有参考价值。

全文