摘要

随着注意力机制的出现,研究人员开始通过对神经网络的特征图中的不同关注角度添加注意力机制来提升图像语义分割准确率。现有融合注意力机制的方法,大多通过计算像素与其它像素之间的关系来求得该像素点的注意力权值,这些方法提升效果具有局限性。针对以上问题,设计了两种不同的注意力模块:空间-条形注意力和通道注意力,提出了一种融合注意力机制的端到端的街道场景语义分割方法。空间-条形注意力采用两种不同条形池化核,捕获条形分布区域之间的长距离依赖关系,可以有效捕获局部和全局上下文信息。在Cityscapes数据集上的实验表明,该算法在验证集和测试集上的分割精度分别为76.89%、77.8%,与现有的算法相比有更好的表现。本文结合人类视觉注意力的特点,提出的两个注意力模型,使得街道场景下的语义分割效果更加准确。