摘要

针对欠定盲源分离问题,提出了增强信号稀疏性的方法,并把具有噪声的基于密度空间聚类与寻找密度峰值聚类相结合用于估计混合矩阵。首先,把时域观测信号变换成时频域的稀疏信号,通过单源点检测突出信号的线性聚类特性,并采用镜像映射将线性聚类转变成致密聚类以便于进行密度基的聚类分析;然后,利用密度空间聚类搜寻密集数据堆中高密度的点和与之相应的邻域,以自动形成聚类簇的数量和初步聚类中心;最后,把获得的聚类数量作为密度峰值聚类的输入参数,在数据簇的范围内搜索其密度峰值以实现对聚类中心位置的进一步修正。以上方法不仅可提高混合矩阵的估计精度,而且估计量具有较高的一致性。