摘要
结合传统抽样调查数据和交通大数据,研究多源数据融合驱动的居民出行特征分析方法.根据传统入户抽样调查居民的年龄结构、职业、车辆拥有、人口,以及手机信令数据分析出行频次分布等因素进行综合分析,获取居民初步出行特征;基于手机信令、IC、AFC、GPS等大数据,通过出行时间分布、OD分布和出行方式结构对居民的出行特征进行综合矫正分析;最后,以广州市为例进行实证分析.对比研究传统抽样调查和多元数据融合分析方法可知,传统抽样调查居民出行漏报率为30%,每天出行2次的比例相差39.5%,全方式非通勤出行比例、晚高峰公交和地铁出行比例分别相差7.4%、8.1%和12.6%.结果表明,多源数据融合驱动的居民出行特征分析方法,在总量上有效挖掘居民出行的沉默需求,在时空分布上起到了"削峰填谷"的作用,是一种研究居民出行特征的有效方法.
- 单位