摘要

针对人体步态识别率低的问题,提出了一种将核主成分分析(KPCA)和相关向量机(RVM)相结合的步态识别方法.首先,选择表面肌电信号(s EMG)作为步态识别信息源,提取表面肌电信号的小波包能量特征.然后,采用核主成分分析方法降维特征值去除冗余的信息,得到能反映步态特征的特征值.最后,利用相关向量机对步态特征向量进行分类,识别平地行走、上楼、下楼、上坡、下坡5种步态.通过分析不同受试者步态识别结果,验证了该方法的可行性和实用性,并和BP(反向传播)神经网络、SVM(支持向量机)等方法比较,结果表明该方法分类时间为2.6609×10-4s,识别正确率为96.67%,是一种有效的步态识别方法.

全文