摘要
提出一种基于语义关联性特征融合的大数据挖掘算法.对云存储大数据分布式信息流进行高维相空间重构,在重构的相空间中提取大数据的语义关联维特征量,以提取的特征量为测试集进行自适应学习训练.采用模糊C均值算法进行大数据语义关联特征的稀疏性融合和聚类处理,在聚类中心实现对挖掘目标数据的指向性聚敛,输出数据挖掘结果,并采用特征压缩器进行降维处理,降低计算开销.仿真结果表明,采用该方法进行大数据挖掘的特征提取准确性较好,挖掘数据的聚类能力较强,在实时性和准确性方面具有优势.
-
单位河南工程学院; 信阳师范学院