DCE-MRI扫描不同微调参数MobileNetV2识别乳腺良恶性病变分析

作者:孟名柱; 何光远; 沈栋; 张铭; 郭毅*
来源:中华肿瘤防治杂志, 2022, 29(24): 1753-1760.
DOI:10.16073/j.cnki.cjcpt.2022.24.06

摘要

目的 通过比较动态对比增强磁共振(DCE-MRI)扫描不同微调策略下的MobileNetV2对乳腺DCE-MRI良恶性病变的识别准确率,从而确定最佳的模型微调策略。方法 选取2017-01-01-2020-12-31南京医科大学附属常州第二人民医院收治的乳腺病变患者310例,其中17例患者为双侧乳腺病变。共获得良性组图像8 712幅,恶性组图像5 148幅。分别将2组图像按照4∶1比例分为训练集和测试集。比较19种微调策略(S0~S18)下的MobileNetV2模型性能,选择最佳模型,并在验证集(另选乳腺良性和恶性病变各25个)中对模型性能进一步验证。以训练集中的准确率(Ac)和损失值以及在验证集中的平均Ac、召回率(Rc)、f1评分(f1)和ROC曲线下面积(AUC)为模型性能指标。结果 S0~S18在训练集中Ac均>99.90%,测试集中Ac以S16最高,为95.48%。S16模型在验证集中的平均Ac、Rc、f1和AUC分别为80.00%、0.80、0.80、0.80,均高于其他微调策略。联合诊断Ac(84.00%)高于人工诊断Ac(68.00%)。联合诊断与病理组织学诊断2种方法的吻合度最高,Kappa=0.680,P<0.001。结论 S16是MobileNetV2微调的最佳策略,联合诊断能够提高乳腺DCE-MRI良恶性病变的识别Ac。

全文