基于动态二分网络表示学习的推荐方法

作者:张阳阳; 陈可佳*; 张杰
来源:计算机应用研究, 2022, 39(04): 1024-1029.
DOI:10.19734/j.issn.1001-3695.2021.09.0409

摘要

构建用户—项目交互网络并学习其表征是一种有效的推荐方法。已有的方法大多将交互网络视为静态同质网络,忽略了交互时序性和节点异质性的影响。针对这一问题,提出一种基于动态二分网络表示学习的推荐方法,首先构建时序加权二分网络;然后将用户节点和项目节点分别映射到不同的向量空间以保留网络的异质性,选择图卷积网络来聚合节点的一阶和高阶邻居信息;最后使用多层感知机学习两类节点嵌入的非线性关系并进行top-N推荐。在Amazon和Taobao数据集上的实验结果表明,该方法在HR和NDCG推荐指标上均显著优于相关的基于静态、异质网络表示学习的方法。

全文