摘要

针对精炼汽油辛烷值损失的问题,基于灰色关联度分析方法与最大信息系数方法,给出变量分组降维的特征选择方法,以有效选择出具有独立性代表的特征;与随机森林算法相结合,提出一种辛烷值损失量预测模型。由于操作变量之间具有高度非线性和相互强耦联的关系,采用变量分组降维,即考虑操作变量、性质变量与产品硫含量、辛烷值损失的关系来筛选特征。利用灰色关联度筛选出对辛烷值损失和产品硫含量的关联程度较强的特征,排序后由最大信息系数筛选出28个独立变量。收集研究生数学建模竞赛试题数据,采用随机森林算法进行仿真预测计算。计算结果表明,基于变量分组的特征选择和辛烷值损失预测模型得到的均方误差为0.0086,拟合值R2为92.5%。