摘要
研究中国股票市场中的两个重要指标:股票价格与交易量,随机波动模型具有长期波动性预测能力,只是由于参数估计的困难而没有受到重视.随着马尔可夫链蒙特卡罗(MCMC)方法和计算机计算能力的提高,这种困难是可以克服的.采用基于马尔可夫链蒙特卡罗(MCMC)模拟技术的贝叶斯估计方法,在基于引入预期交易量和非预期交易量的随机波动模型下,对模型参数进行后验分布的构造,并以2005年1月-2012年5月的上证综合指数的每日收盘指数及相应的日成交量序列为样本,通过实证仿真得到参数结果值.结果表明,非预期交易量对股市价格的影响要大于预期交易量.
-
单位神州数码信息系统有限公司; 北京科技大学; 中国科学院数学与系统科学研究院