摘要
针对混凝土裂缝检测具有多类别影响的复杂性,难以做准确分类、分割和定位任务问题,提出基于改进Mask R-CNN钢纤维混凝土裂缝检测方案。为提高检测速率和精度,对方案模型主干网络增加分散注意力模块跨越特征图组,提高特征学习能力,在交并比基础上增加目标与锚框间距离、重叠率、尺度和惩罚项提高回归精度,并与原始Mask R-CNN模型进行对比。仿真结果表明裂缝、数字以及词汇的平均精度均值达到96.09%,能够精准定位裂缝并作出像素级分割,单样本耗时198 ms。提出的模型既增加了准确率又降低了图片处理延时,与原始Mask R-CNN模型相比,平均精度均值和图片处理速率分别提升6.2%和5.7%。仿真实验证明改进后的模型具有较强的鲁棒性以及泛化能力。
- 单位