摘要

针对最小二乘支持向量机参数选择对模型性能的重要影响,并且以往的参数优选方法效果差且耗时长这一问题,提出基于粒子群算法优化最小二乘支持向量机预测模型.该模型用最小二乘支持向量机理论建立,用粒子群算法优化模型参数.论文将此模型用于预测评价固定床煤气化气化效果的三个主要性能指标(气体热值、气化效率、气体产率),通过现场实际数据仿真结果表明,该算法有效地提高了模型预测精度,验证了此模型的可靠性和可用性.