摘要

针对交通道路中的目标检测问题,提出了一种基于锚点聚类、全锚点训练策略及强化交并比(SIoU)的交通目标检测方法(T-Faster RCNN)。首先,通过一个基于交并比距离的K-means聚类获取交通目标的宽高在比例和尺度两个几何属性的先验知识,生成锚点边界框;其次,将分类损失与焦点损失相结合进行全锚点训练;再次,基于两个边界框所构成的最小闭包生成SIoU,用于筛选建议。在KITTI数据集上进行的对比实验表明本文方法比Faster RCNN的mAP提高了14.4%。