摘要

多模态地理大数据时空分析旨在融合地理大数据的多模态信息发现有价值的时空分布规律、异常表现、关联模式与变化趋势,是全空间信息系统的核心研究内容,并有望成为推进地理学人地关系研究的重要突破口。为应对地理大数据时代的新机遇与挑战,本文围绕4类核心的时空分析方法(时空聚类分析、时空异常分析、时空关联分析与时空预测分析),系统归纳了国内外研究现状,探讨了时空分析中多尺度建模、多视角协同、多特征认知与多特性表达的研究难点。进而,介绍了多模态地理大数据时空聚类、异常、关联与预测分析模型,更加全面、客观、精准地认知与理解时空大数据中潜在的地理知识,并且能够在气象环境监测、公共安全管理、城市设施规划等多个应用领域发挥关键作用。