摘要

在使用BP神经网络构建粮情温度预测模型时,因其存在误差高、稳定性差等缺陷,借鉴遗传算法和粒子群的思想,提出一种GANPSO-BP神经网络来预测粮食温度。首先为验证GANPSO算法的可用性,将该算法与PSO算法和IPSO算法在测试函数上利用Matlab软件进行模拟测试,结果得出GANPSO算法效果相对与其他两种算法有着明显提高;然后再对BP,PSO-BP和GANPSO-BP三种神经网络进行测试,得出BP的均方误差为0.021 79,PSO-BP的均方误差为0.017 65,GANPSO-BP的均方误差为0.013 30;从而得到GANPSO-BP神经网络相对于其他两种有着较好的稳定性,能够很好地预测粮食温度的变化情况。