摘要

网络入侵检测是网络安全的重要组成部分之一,而异常流量检测是实现网络入侵检测的一种方法.针对目前异常流量检测中存在的数据不平衡以及检测模型检测率较低、误报率较高的问题,提出一种过采样算法与混合神经网络相结合的异常流量检测模型.该模型通过学习网络流量数据中的特征来实现异常检测.首先,采用SMOTE与ENN对少数类样本进行过采样解决不平衡问题,再对网络流量数据的特征进行归一化;然后通过卷积神经网络来学习网络流量数据中的空间特征;再将这些包含空间信息特征的数据在时间上错开排列后输入到双向长短时记忆网络来进一步学习其时序特征;接着使用注意力机制对特征的重要性进行计算,最后输出检测结果.在NSL-KDD数据集上的实验结果表明:本文模型相较于目前的机器学习与深度学习检测模型有更高的准确率与较低的误报率.