摘要

目前语音情感识别存在语音样本不足、提取的特征数据量大和无关特征多使得识别率不高的问题。针对语音样本不足的情况,在预处理阶段提出了时频域的数据增强方法,对原有的数据库进行扩充;根据传统算法中提取的特征数据量大且与情感无关的特征多的现状,提取了1 582维的情感特征和10组低级描述特征。分别在支持向量机、随机森林和K最邻近3种机器学习算法上做了对比实验。实验证明:支持向量机的平均识别率比较好。在所提取的10组特征组中,LogMelFreqBand特征在3种算法上的精确度分别为74.63%、64.93%和66.42%;而pcmfftMagmfcc特征的精确度分别为84.33%、73.13%和58.21%。