摘要

网联车辆节点产生的不同属性的大数据流量计算任务进行传输并卸载时,通常引起通信系统中时延抖动、计算能耗与系统开销大等问题,因此,根据实际通信环境,提出一种C-V2X车联网(IoV)中基于模拟退火算法(SAA)的任务卸载与资源分配方案。首先,根据任务处理优先程度,对处理优先程度较高的任务进行协同卸载计算处理;其次,通过全局搜索最优卸载比例因子的方式,制定了一种基于SAA的任务卸载策略,且分析并优化了任务卸载比例因子;最后,在任务卸载比例因子更新过程中,将系统开销最小化问题转化为功率和计算资源分配凸优化问题,并利用拉格朗日乘子法获取最优解。通过对所提算法与本地卸载、自适应遗传算法等作比较可知,随着计算任务的数据量不断增加,自适应遗传算法比本地卸载的时延、能耗、系统开销分别降低了5.97%、49.40%、49.36%,在此基础上基于SAA的方案较自适应遗传算法的时延、能耗、系统开销再降低了6.35%、92.27%、91.7%;随着计算任务CPU周期数不断增加,自适应遗传算法比本地卸载的时延、能耗、系统开销分别降低了16.4%、49.58%、49.23%,在此基础上基于SAA的方案较自适应遗传算法的时延、能耗、系统开销再降低了19.61%、94.39%、89.88%。实验结果表明,SAA不仅能降低通信系统时延、能耗及系统开销,还可以使结果加速收敛。