一种基于深度学习的弱监督目标定位方法

作者:赖睿; 吴俣; 徐昆然; 李奕诗; 官俊涛; 杨银堂
来源:2020-06-30, 中国, CN202010614514.1.

摘要

本发明公开了一种基于深度学习的弱监督目标定位方法,包括:将待测图像输入至弱监督定位网络,得到目标定位图以及所述目标的分类结果;基于目标定位图和分类结果确定目标定位结果;弱监督定位网络包括:初始特征提取模块,用于从待测图像中提取初始特征图;注意力加权模块,用于对初始特征图进行加权;掩模模块,用于屏蔽注意力加权特征图中与目标相关的显著性区域得到注意力掩模图;特征融合模块,用于对初始特征图和注意力掩模图进行特征融合;去冗余连通域模块,用于去除融合特征图中的冗余连通域,输出目标定位图;分类结果输出模块用于输出目标的分类结果。本发明可以在确保定位任务的准确性的前提下保持目标细节。