摘要

针对基于机器学习模型的故障诊断存在依赖人工特征提取质量、维数灾难问题和卷积神经网络(CNN)模型构建缺乏自适应性等问题,提出了一种基于粒子群优化(PSO)算法的自适应CNN故障诊断方法,并将其应用于旋转机械故障诊断。将一维时域信号变成二维时频图像;使用PSO算法对CNN模型中的7个关键参数进行优化选取,以构建深度学习模型;将二维时频图像输入优化后的深度学习模型,对旋转机械故障进行诊断。结果表明,所提方法具有较高的准确率、稳定性和自适应性。