摘要

为了从多参数磁共振(mp-MRI)的前列腺区域中自动提取前列腺癌病灶区域,提出新的深度卷积神经网络模型SE-Mask-RCNN.在特征图上搜索定位包含病灶的候选区域,基于候选区域实现病灶的精细分割.为了利用mp-MRI中的互补信息,通过2个并行卷积网络分别提取表观扩散系数(ADC)和T2加权(T2W)图像的特征图后进行融合,使用挤压与激励块自动提升融合特征图中的有效特征并抑制无效特征.在收集得到的140例数据上进行实验.结果表明,使用SE-Mask-RCNN得到前列腺癌病灶分割Dice系数为0.654,敏感度为0.695,特异度为0.970,阳性预测值为0.685.与U-net、V-net、Resnet50-U-net和Mask-RCNN等模型相比,SE-Mask-RCNN能够有效提升mpMRI中前列腺癌病灶区域的分割精度.