摘要
基于深度学习技术的通信信号调制识别算法由于其优秀的特征提取能力,极大地提升了调制识别任务的精度,但是对抗样本特性的存在,导致基于深度学习的调制识别模型的安全性受到了极大威胁,通过在训练好的调制识别网络中添加设计好的特定微小扰动,就可以使得调制识别模型完全失效。研究了基于深度学习的调制识别模型及其对抗样本攻击方法,提出一种基于快速梯度符号法的定向扰动生成方法,该方法在扰动和原始信号功率比为-21 dB的条件下,针对11类常见的不同调制种类的通信信号生成扰动,实现对通信信号调制识别模型的定向攻击,为智能调制识别模型的攻防对抗提供参考。
- 单位