摘要

Based on the observation data of TIMED/SABER from 2002 to 2018, atmospheric density influence on aerothermodynamic environment of hypersonic vehicles is analyzed at 20-80 km. Based on the estimation method of heating transfer on stagnation in engineering, the relationship between the atmospheric density variations and the heating transfer changes is used to analyze the distribution characteristics of heating transfer changes in the vertical and horizontal directions qualitatively and quantitatively. The results show that: compared with the heating transfer calculated by USSA76, the heating transfer calculated by monthly mean density of SABER is higher in the middle and high latitudes in the summer hemisphere and lower in the winter hemisphere. There is a maximum value of heating transfer increments around 80 km in high latitudes of summer hemisphere. In summer, the maximum value of heating transfer increments in the southern hemisphere is higher than that of the northern hemisphere. Especially in January of southern hemisphere, the maximum value can reach 32.2%. In the longitude direction, the distribution of heat transfer in the summer hemisphere shows a small difference, while the heating transfer distribution in the winter hemisphere is significantly different. Considering disturbances in the real atmosphere, the heating transfer predicted by SABER is higher than that of USSA76 by up to 40.7% and 36.6% in summer of the southern and northern hemispheres around 80 km, respectively. In the longitude direction, the distribution of heating transfer caused by atmospheric disturbance is significantly different. Therefore, the effects of atmospheric disturbances on hypersonic vehicles cannot be ignored in the vehicle design process. Hypersonic vehicles should avoid crossing the southern or northern hemispheres during the summer to avoid the risk of increased heating transfer.

全文