摘要
奇异方程经常出现在很多实际非线性问题中,如反应扩散系统等.因此,研究奇异非线性方程的求解具有十分重要的意义.平行割线法是一种经典的求解非线性方程的迭代方法,它收敛阶较高,计算量较少.但在解决实际问题时,一方面,抽象出的数学模型与实际问题总是存在着一定的偏差,另外,在数据的计算中难免存在着一定的计算误差,所以研究用非精确的平行割线法求解非线性奇异问题具有很重要的现实意义,使得求解奇异问题具有更高的实用性和可行性.采用在平行割线法的迭代公式中加入摄动项的方法,构造出新的加速迭代格式,证明了新的迭代格式的收敛性,给出了收敛速率,得到了误差估计.
-
单位哈尔滨金融学院; 哈尔滨理工大学