摘要
光响应非均匀性(photo-response non-uniformity,PRNU)是用于数字图像设备溯源的一种重要特征,也被称为成像设备指纹。针对图像真实噪声包含PRNU和大量未知噪声的复杂特性,本文提出一种结合深度迭代缩放卷积神经网络的PRNU数字成像设备指纹提取算法。首先,通过连续重复的缩小与放大特征图的分辨率来提高GPU内存利用效率和生成大的感受野,尽可能的提取包含完整PRNU指纹的真实噪声。然后,利用来自同一数字成像设备多幅图像的噪声残差来估计PRNU指纹。本文算法在相机溯源数据集Dresden和手机溯源数据集Daxing上进行了测试。实验结果显示,与基于小波变化的算法、基于块匹配3D滤波的算法以及基于前馈去噪卷积神经网络的算法相比,本文算法具有的更好的识别率和普适性。
- 单位