摘要

为满足风电场远程集控中心高效、低成本预测不同地理位置风电场风速的要求,结合“离线训练,在线预测”的思想,提出一种基于多方面特征提取和迁移学习的多变量风速预测模型。离线模型融合双通道卷积神经网络和双向长短时记忆神经网络捕捉风速信息,学习各典型位置风电场的风速特性,然后迁移至任意风电场实现快速在线预测,通过改进的多目标蝗虫优化算法集成各典型风电场预测结果,进一步提高预测精度。最后通过河北一集控中心验证表明,该文所提模型的适应性与准确性均优于其他基线模型。

全文