摘要
裂缝是隧道衬砌最常见的病害之一,影响隧道的结构耐久性和运营安全性。由于现役隧道日常检修任务艰巨,因此对隧道裂缝的高效智能化检测至关重要。针对隧道衬砌裂缝传统检测方法检测精度低、检测速度慢等问题,基于YOLOX算法提出一种新的YOLOX-G隧道衬砌裂缝图像检测算法。采用Ghostnet替换YOLOX的CSPDarknet主干网络,在加强特征提取网络中利用Ghost卷积代替原卷积块,用GIOU损失函数代替IOU损失函数。将YOLOX-G算法与YOLOX,YOLOv5,YOLOv3,SSD和Faster RCNN 5种算法在构建的隧道裂缝图像数据集上进行实验对比,结果显示:YOLOX-G算法的F1分数为85.29%,相较于其他5种算法分别提高了4.26%,6.49%,7.29%,17.23%和4.53%;AP值为90.14%,相较于其他5种算法分别提高了7.28%,10.93%,11.53%,17.65%和10.38%。此外,YOLOX-G算法模型数据大小为38.1 M,相对于YOLOX算法模型压缩了81.59%;检测单张图片的时间为15.12 ms,FPS为66.14帧/s,相较于其他5种算法分别提高了18.89帧/s,13.92帧/s,21.41帧/s,25.72帧/s和49.69帧/s。因此,提出的YOLOX-G算法满足移动设备对模型大小的要求及对帧率的需求,可以实现对隧道衬砌裂缝高速度、高精度、实时动态性检测。
- 单位