基于轻量化的高分辨率鸟群识别深度学习网络

作者:王蕊; 史玉龙; 孙辉*; 张友民
来源:华中科技大学学报(自然科学版)科技大学, 2023, 51(05): 81-87.
DOI:10.13245/j.hust.230513

摘要

针对机场低空区域鸟类对飞行器起飞和降落带来的安全问题,提出一种轻量型高分辨率的鸟群场景识别网络,用于实现鸟群的计数和定位.该网络以高分辨率网络为基础框架,使用非对称卷积和Ghost模块对网络进行轻量化,并在网络的第四阶段引入联合金字塔上采样模块,提升模型对多尺度特征的融合能力.进一步提出联合使用负样本抑制损失函数,用于监督网络的训练过程,使网络更加关注于鸟类目标.将所提出的模型在鸟群数据集上进行实验,实验结果表明:本方法可以有效对鸟群进行计数和定位,并在模型性能和模型参数量上达到了平衡.为进一步验证所提出方法的有效性,在两个人群数据集(Shanghai Tech,UCF-QNRF)上进行训练与测试,证明其具有较高的准确性和鲁棒性.

全文