摘要
采用训练字典的稀疏表示方法能反映信号的本质特征和内在结构。针对遥感多光谱图像和全色图像融合存在的光谱失真问题,提出了一种基于àtrous小波和联合稀疏表示的融合方法。首先对多光谱图像进行IHS变换,然后对全色图像和变换后的多光谱亮度分量进行àtrous小波变换,对其低频分量进行字典训练,采用联合稀疏表示模型进行分解得到公共成分和独特成分,最后对稀疏系数进行融合。通过对山区和城区不同场景的IKONOS遥感数据进行实验,融合结果不仅在空间分辨率得到了提高,并且光谱分辨率保持较好,目视判读和量化分析表明其多数性能优于目前常用的传统算法。
- 单位