摘要
支持向量机(support vector machine,SVM)对于核函数及模型参数十分敏感,多核学习可降低模型的参数敏感性。提出了基于二值粒子群优化(binary particle swarmoptimization,BPSO)的多核学习SVM分类方法(BPSO-MKSVC)进行变压器故障诊断。多核学习支持向量机(multi-kernel support vector classifier,MKSVC)采用由多个基核线性组合的多核进行学习,其中每一个基核完成从特定样本空间提取故障特征,通过多面故障特征的线性组合,将学习分类问题转化为相应的凸规划问题进行迭代求解。采用BPSO优化算法对MKS...
- 单位