摘要
随着油气勘探开发向着深层、深水及非常规等复杂领域的不断扩展,钻井面临的井况与约束条件更加苛刻,钻柱的动力学特性更加复杂,失效问题频发。该文应用格林函数理论对多跨旋转钻柱双向耦合动力学特性进行了定量分析和研究。考虑多稳定器及不同约束条件,以钻柱整体为研究对象,基于Euler-Bernoulli梁模型和Hamilton原理建立了具有广义边界约束条件及多稳定器的旋转钻柱双向耦合动力学方程。采用分离变量法、Laplace变换及Laplace逆变换求解所获得的振动微分方程,得到了旋转钻柱系统横向振动的格林函数解以及以格林函数为基础的多跨旋转钻柱系统的闭合形式的模态函数及隐式的频率方程。定量地分析了稳定器位置、弹簧刚度系数与稳定器个数对钻柱系统振动特性的影响。数值结果表明:稳定器位置与固有频率的关系曲线中有相应阶次数目的峰值;随着等效弹簧的刚度系数的增大,系统的固有频率随之增大,但当刚度增加到一定值时,系统的一阶和二阶频率将趋于稳定。研究结果有助于深化对多跨旋转钻柱的动力学特性规律的认识,为提高钻速、减少钻柱失效及钻柱钻井技术的应用提供了新的研究方法和理论依据。
-
单位石油大学机电工程学院