结合安全生产事故案例文本特点,利用自然语言处理(NLP)技术对安全生产事故分类,基于转换器的双向编码表征(BERT)模型利用"抽取+生成"相结合的方式获得文本摘要,再通过迁移学习训练提升模型性能,并利用分组分类算法对文本的52个标签进行多标签分类,获得较好的分类效果,为安全生产监管、事故隐患的排查和分析奠定基础。