命名实体识别模型Lattice LSTM集成字信息和词信息,在路由词信息的过程中会退化成词模型,不能有效利用字信息内在关联性。针对上述问题,提出基于多头注意力机制的Lattice LSTM模型,获取字信息的内在关联和远距离语义信息,同时对模型进行调参优化与改进。在多个数据集上的实验验证,该模型相对于基线模型F1值提高了0.48%~1.11%。