摘要

为了对磁片质量检测过程中常见的缺角、划痕、脏污缺陷准确地分割,利用U-Net卷积神经网络的编码解码功能,提出了一种改进的U-Net网络的磁片缺陷图像分割算法。该方法采用深度可分离卷积来减小计算量与模型参数量,结合注意力机制sSE block提炼图像特征图,提高模型的准确率。实验结果表明,所提出算法在磁片缺陷检测中网络的输出图像失真更小,针对缺角、划痕、脏污缺陷检测取得了良好的表现,网络检测结果的准确率(AC)分别达到98.23%、97.25%、96.57%,与原始网络相比提高了1.1%~2.86%,平均交互比(MIoU)分别达到了84.72%、77.36%、75.81%,提高了1.5%~3%,图像分割的效果良好。将改进后的网络在车间现场进行测试,误报率小于5%,漏报率为0。