摘要
针对实时语义分割方法中因忽略其本质所导致的分割精度不高的问题,提出了一种多级上下文引导的轻量化网络。首先,将深度可分离卷积及非对称卷积相结合,设计了基于并行非对称卷积的上下文引导模型以学习局部特征及其周围上下文构成的联合特征;其次,将该模型堆叠于网络来实现特征的多级优化;最后,通过通道注意模型筛选出与更高阶段语义一致的浅层特征,从而提高分割效果。实验结果表明,所提网络在Cityscapes数据集上以94.7的帧速率获得了72.4%的平均交并比,并在CamVid数据集上取得显著的性能提升。同当前的其他实时语义分割方法相比,该网络性能更优。
-
单位生产力促进中心; 通信与信息工程学院; 重庆邮电大学