摘要
股票价格预测是金融和计算机学科交叉领域的经典问题,由于股票市场的复杂性和高波动性等特征,及时预测股票价格被认为是最具挑战性的问题之一.长短期记忆(LSTM)神经网络在时间序列预测问题中表现出良好的性能.然而,该模型及其改进模型专注于顺序捕获序列信息,在学习输入数据之间非序列性的内部关联方面没有优势.此外,模型在输入数据的融合方面往往并不全面.针对上述问题,提出了融合多源数据、具有自注意力机制的长短期记忆神经网络(SA-LSTM)股票价格预测模型.SA-LSTM模型具有自注意力单元,在学习序列特征时能够快速捕获长距离依赖关系,有效学习数据之间的相关性.在多源数据的融合方面,同时融合与目标股票直接间接相关的数据,解决输入数据不全面的问题.通过对股票次日收盘价预测的实验表明,与其他基准预测模型相比,该模型取得了最佳性能,在不同数据集上均具有最小预测误差.
- 单位