为了优化虚拟工业制造的控制策略,采用狼群优化的卷积神经网络算法进行虚拟工业制造控制研究。首先根据虚拟工业制造任务和资源数据,建立任务-资源列表,并结合单位矩阵对任务-资源列表进行稀疏化,形成虚拟制造单元;接着建立卷积神经网络虚拟制造控制模型,并采用狼群算法对权重和偏置进行优化;最后以所有任务的平均制造时间为目标函数,对虚拟制造单元进行训练优化。船舶主机虚拟制造实验证明,相比于常用的控制算法,通过合理设置卷积核池化尺寸的狼群优化卷积神经网络算法能够获得平均制造时间的最优解。