摘要
针对警情领域关键实体信息难以识别的问题,提出一种基于BERT的神经网络模型BERT-BiLSTMAttention-CRF用于识别和提取相关命名实体,且针对不同案由设计了相应的实体标记注规范。该模型使用BERT预训练词向量代替传统Skip-gram和CBOW等方式训练的静态词向量,提升了词向量的表证能力,同时解决了中文语料采用字向量训练时词语边界的划分问题;还使用注意力机制改进经典的命名实体识别(NER)模型架构BiLSTM-CRF。BERT-BiLSTM-Attention-CRF模型在测试集上的准确率达91%,较CRF++的基准模型提高7%,也高于BiLSTM-CRF模型86%的准确率,其中相关人名、损失金额、处理方式等实体的F1值均高于0. 87。