摘要

为解决滚动轴承故障信号不稳定和故障识别准确率低的问题,结合VMD样本熵特征提取与布谷鸟搜索(CS)算法优化的超限学习机(ELM)进行故障识别实验。首先对故障信号进行VMD分解并计算样本熵形成特征向量,然后通过CS算法优化ELM输入权值和隐含层阈值,最后利用CS-ELM模型进行分类诊断。实验结果表明:基于VMD样本熵和CS-ELM的滚动轴承故障识别准确率高于99%。