摘要

与传统的协同过滤推荐算法相比,概率矩阵分解(PMF)模型在大型、稀疏的数据集上表现良好,但其仅利用了用户对项目的评分信息,没有充分考虑用户和项目的特征,因此在推荐准确度等方面仍具有很大的提升空间。基于概率矩阵分解模型,融合用户属性特征、用户偏好特征和项目标签特征,提出一种新的推荐算法UFIF-PMF。首先,根据用户属性信息计算用户属性相似度,利用项目标签信息和用户评分信息计算用户偏好相似度,并通过加权构建用户相似度矩阵;然后,构建基于项目标签信息的项目相似度矩阵;接着,将用户相似度矩阵和项目相似度矩阵融入到概率矩阵分解模型中;最后,在电影公开数据集Movielens上进行模型训练和对比实验。实验结果表明,在训练集比例为90%、隐性特征维度为10的情况下,与PMF、基于用户偏好的概率矩阵分解推荐算法(USPMF)和融合物品相似度的概率矩阵分解推荐算法(ISPMF)相比,UFIF-PMF算法的均方根误差(RMSE)分别下降6.27%、3.65%和3.49%,平均绝对误差(MAE)分别下降8.46%、4.8%和4.67%,同时有效缓解了推荐系统的冷启动和数据稀疏问题,有较强的可扩展性。

全文