摘要

在人脸识别模型的人脸验证任务中,传统的对抗攻击方法无法快速生成真实自然的对抗样本,且对单模型的白盒攻击迁移到其他人脸识别模型上时攻击效果欠佳。该文提出一种基于生成对抗网络的可迁移对抗样本生成方法TAdvFace。TAdvFace采用注意力生成器提高面部特征的提取能力,利用高斯滤波操作提高对抗样本的平滑度,并用自动调整策略调节身份判别损失权重,能够根据不同的人脸图像快速地生成高质量可迁移的对抗样本。实验结果表明,TAdvFace通过单模型的白盒训练,生成的对抗样本能够在多种人脸识别模型和商业API模型上都取得较好的攻击效果,拥有较好的迁移性。