摘要

神经网络融合物理先验知识能极大提高其拟合复杂变量的能力,其中融合神经网络和物理控制方程的物理融合神经网络模型(PINN),赋予传统神经网络所不具备的先验知识和可解释性。结合课题组近期对PINN方法的研究和应用,本文介绍了融合Navier-Stokes方程的PINN神经网络模型预测能力。首先借助三维超声速槽道湍流的直接数值计算数据,耦合神经网络和可压缩N-S方程,应用PINN方法对槽流的瞬时流场的物理量进行预测,并对瞬时量及其统计平均值与DNS对应结果进行对比来验证训练所获PINN模型的可靠性。其次,借助不可压缩圆柱绕流与三维可压缩槽道流动的计算数据,利用PINN模型进行了Navier-Stokes控制方程待定系数与待定项的重建,结果显示其在重建流场流动信息的同时可逼近方程的待定系数。研究结果证实了PINN方法可为建立流动物理模型提供工具和算法支撑。