摘要

目的 解决定制化木门尺寸规格不统一、表面纹理多样而导致的堆垛分类困难、搬运效率低下等问题。方法 提出采用深度学习方法进行定制式木门工件检测,以YOLOV3网络为基本框架开展机器人工件识别方法研究。首先,通过图像数据增强和预处理,扩充定制式木门数据;然后,进行YOLO V3损失函数改进,并根据木门特征进行定制式木门数据集锚框尺度的重新聚类;最后,应用空间金字塔池化层进行YOLO V3中特征金字塔网络改进,并通过随机选取的测试集验证本文方法的有效性。结果 测试数据集的平均检测准确率均值达到98.05%,检测每张图片的时间为137 ms。结论 研究表明,本文方法能够满足木门生产线对准确率和实时性的要求,可大大提高定制化木门转线及堆垛效率。

全文