摘要

基于动态用户均衡、系统最优分配的诱导方法,侧重路网需求的宏观预测和调节,难以准确辨识道路拥堵点的关联车流,制约了诱导效果。为精准调控致堵车流,有效缓解常发性拥堵,研究基于需求溯源的主动交通诱导方法。遵循靶向诱导的思路,分析车辆行驶轨迹和常发拥堵点的交通流关联性,运用卡尔曼滤波对关联车流进行短时预测,在此基础上,结合流量占比、路径饱和度等指标,对诱导目标车流进行优选。同时,从负荷均衡的角度出发,基于路段与路径交通流的时空关联更新路网交通状态,建立以饱和度均衡为目标的主动诱导优化模型。仿真结果表明:相比反应型诱导与基于路径偏好的主动型诱导,所提方法使常发拥堵点的车均延误、停车次数等下降30%~60%,路网车均延误、停车次数等下降10%~15%,模型收敛速度提高,交通效益提升,验证了该方法的有效性。