摘要

提出了一种基于偏最小二乘增量式神经网络的近红外光谱定量分析模型。该模型采用典型三层反向传播神经网络(BPNN),不同波长吸光度和成分浓度是模型的输入和输出。在使用历史样本训练之前先进行偏最小二乘(PLS)回归,所得自变量和因变量的历史负荷矩阵分别用于确定模型输入层和输出层的初始权值,且自变量的主成分个数作为隐层的节点数。当获得新的样本时,对新数据与历史负荷矩阵组合后进行PLS回归,将所得新的负荷矩阵与历史负荷矩阵融合后作为模型输入层和输出层新的初始权值,接着使用新样本对模型进行训练来实现增量式更新。将所提模型与PLS、BPNN、基于PLS的BPNN、递归PLS在天然气燃烧烟气近红外光谱数据上测定后比较。对于烟气中二氧化碳浓度的预测,所提模型的预测均方根误差(RMSEP)分别降低了27.27%,58.12%,19.24%和14.26%;对于烟气中一氧化碳浓度的预测,所提模型的RMSEP分别降低了20.65%,24.69%,18.54%和19.42%;对于烟气中甲烷浓度的预测,此模型的RMSEP分别降低了27.56%,37.76%,8.63%和3.20%。实验结果表明,所提模型不仅通过PLS对BPNN结构和初始权重的优化,使模型具有较强的预测能力,而且能在已建模型信息的基础上,不访问旧数据而用新增样本即可完成自身的增量式更新,从而使模型具有较好的稳健性和泛化性。