摘要
计算2组基于径向基神经网络的结构损伤程度识别结果,一组神经网络输入是加速度传感器信息,另一组神经网络输入是应变传感器信息;以2组识别结果及其可靠性为基础,提出采用D-S证据理论数据融合方法的结构损伤程度综合识别方法.以网壳结构为研究对象,建立结构损伤模型和神经网络样本库及输入输出向量,并对不同噪声水平下结构损伤程度识别结果进行计算.计算结果显示,基于多类型传感器信息的结构损伤程度综合识别结果的误差明显小于基于单类型传感器的识别结果,并在神经网络输入有噪声的情况下,仍保持较好的效果.因此,基于多类型传感器信息的结构损伤程度识别方法在合理应用结构多类型响应信息的基础上,能够获得更优的结构损伤程度识别结果.
-
单位哈尔滨工业大学深圳研究生院