摘要

为了提升有监督学习的单目深度估计网络对于实际场景测距任务的准确性和适用性,提出了一种基于单目深度估计和校准参数的距离测算方法。首先通过引入多元注意力模块和优化设计网络结构,构建了一种融合全局上下文和空间注意力机制的网络(GSNet),然后制定校准参数以建立场景的预测距离与实际距离的比例关系,从而获得校准后的距离值。实验证明,融合网络GSNet和校准参数可以有效减小单目深度估计方法在实际测算距离的误差。相比于使用单目深度估计直接预测距离信息,本文方法测算距离的平均绝对误差小于0.15 m,平均相对误差小于10%,具有很好的可行性和准确性。

全文