摘要
为从广域的视角准确全面地采集连续交通流信息,针对悬停无人机视频提出了基于形态分析的车辆自动识别方法。首先,人工勾画视频帧图像的感兴趣区域,并进行灰度化处理;其次,基于感兴趣区域的Canny边缘检测结果生成亚像素级骨架图像,并对图像骨架进行分解和重构处理;然后,综合应用形态学运算(膨胀、腐蚀、填充、闭运算)和连通域形态特征(面积、矩形度、等效椭圆长轴与短轴)识别车辆目标;最后,对548帧无人机视频图像分别进行算法检测和人工识别,并计算车辆识别的正检率、重检率、漏检率和错检率。结果表明:该算法具有较高的正检率(均值95.02%),较低的重检率(均值2.20%)、漏检率(均值2.77%)和错检率(均值8.24%);同时,正检率、重检率、漏检率和错检率标准差分别为2.09%、1.67%、1.67%和2.56%,表明算法性能指标值离散程度较小、稳定性较高。
-
单位重庆交通大学; 重庆市交通规划研究院; 交通运输学院; 安徽科力信息产业有限责任公司